mysql查询优化之100万条数据的一张表优化方案
1.两种查询引擎查询速度(myIsam 引擎 )
InnoDB 中不保存表的具体行数,也就是说,执行select count(*) from table时,InnoDB要扫描一遍整个表来计算有多少行。
MyISAM只要简单的读出保存好的行数即可。
注意的是,当count(*)语句包含 where条件时,两种表的操作有些不同,InnoDB类型的表用count(*)或者count(主键),加上where col 条件。其中col列是表的主键之外的其他具有唯一约束索引的列。这样查询时速度会很快。就是可以避免全表扫描。
总结:
mysql 在300万条数据(myisam引擎)情况下使用 count(*) 进行数据总数查询包含条件(正确设置索引)运行时间正常。对于经常进行读取的数据我们建议使用myIsam引擎。
2.百万数据下mysql分页问题
在开发过程中我们经常会使用分页,核心技术是使用limit进行数据的读取,在使用limit进行分页的测试过程中,得到以下数据:
?1 2 3 4 5 6 7 8 | select * from news order by id desc limit 0,10 耗时0.003秒 select * from news order by id desc limit 10000,10 耗时0.058秒 select * from news order by id desc limit 100000,10 耗时0.575秒 select * from news order by id desc limit 1000000,10 耗时7.28秒 |
我们惊讶的发现mysql在数据量大的情况下分页起点越大查询速度越慢,100万条起的查询速度已经需要7秒钟。这是一个我们无法接受的数值!
改进方案 1
?1 2 3 4 | select * from news where id > ( select id from news order by id desc limit 1000000, 1) order by id desc limit 0,10 |
查询时间 0.365秒,提升效率是非常明显的!!原理是什么呢???
我们使用条件对id进行了筛选,在子查询 (select id from news order by id desc limit 1000000, 1) 中我们只查询了id这一个字段比起select * 或 select 多个字段 节省了大量的查询开销!
改进方案2
适合id连续的系统,速度极快!
?1 2 3 | select * from news where id between 1000000 and 1000010 order by id desc |
不适合带有条件的、id不连续的查询。速度非常快!
3. 百万数据下mysql条件查询、分页查询的注意事项
接上一节,我们加上查询条件:
?1 2 3 4 5 | select id from news where cate = 1 order by id desc limit 500000 ,10 查询时间 20 秒 |
好恐怖的速度!!利用第一节知识进行优化:
?1 2 3 4 5 | select * from news where cate = 1 and id > ( select id from news where cate = 1 order by id desc limit 500000,1 ) order by id desc limit 0,10 查询时间 15 秒 |
优化效果不明显,条件带来的影响还是很大!在这样的情况下无论我们怎么去优化sql语句就无法解决运行效率问题。那么换个思路:建立一个索引表,只记录文章的id、分类信息,我们将文章内容这个大字段分割出去。
表 news2 [ 文章表 引擎 myisam 字符集 utf-8 ]
id int 11 主键自动增加
cate int 11 索引
在写入数据时将2张表同步,查询是则可以使用news2 来进行条件查询:
?1 2 3 4 | select * from news where cate = 1 and id > ( select id from news2 where cate = 1 order by id desc limit 500000,1 ) order by id desc limit 0,10 |
注意条件 id > 后面使用了news2 这张表!
运行时间 1.23秒,我们可以看到运行时间缩减了近20倍!!数据在10万左右是查询时间可以保持在0.5秒左右,是一个逐步接近我们能够容忍的值!
但是1秒对于服务器来说依然是一个不能接受的值!!还有什么可以优化的办法吗??我们尝试了一个伟大的变化:
将 news2 的存储引擎改变为innodb,执行结果是惊人的!
?1 2 3 4 | select * from news where cate = 1 and id > ( select id from news2 where cate = 1 order by id desc limit 500000,1 ) order by id desc limit 0,10 |
只需要 0.2秒,非常棒的速度。
4.mysql存储引擎 myIsam和innodb的区别
MySQL有多种存储引擎,MyISAM和InnoDB是其中常用的两种。这里介绍关于这两种引擎的一些基本概念(非深入介绍)。
MyISAM存储引擎,基于传统的ISAM类型,支持全文搜索,但不是事务安全的,而且不支持外键。每张MyISAM表存放在三个文件中:frm 文件存放表格定义;数据文件是MYD (MYData);索引文件是MYI (MYIndex)。
InnoDB是事务型引擎,支持回滚、崩溃恢复能力、多版本并发控制、ACID事务,支持行级锁定(InnoDB表的行锁不是绝对的,如果在执行一个SQL语句时MySQL不能确定要扫描的范围,InnoDB表同样会锁全表,如like操作时的SQL语句),以及提供与Oracle类型一致的不加锁读取方式。InnoDB存储它的表和索引在一个表空间中,表空间可以包含数个文件。
核心区别
MyISAM是非事务安全型的,而InnoDB是事务安全型的。
MyISAM锁的粒度是表级,而InnoDB支持行级锁定。
MyISAM支持全文类型索引,而InnoDB不支持全文索引。
MyISAM相对简单,所以在效率上要优于InnoDB,小型应用可以考虑使用MyISAM。
MyISAM表是保存成文件的形式,在跨平台的数据转移中使用MyISAM存储会省去不少的麻烦。
InnoDB表比MyISAM表更安全,可以在保证数据不会丢失的情况下,切换非事务表到事务表(alter table tablename type=innodb)。
应用场景
MyISAM管理非事务表。它提供高速存储和检索,以及全文搜索能力。如果应用中需要执行大量的SELECT查询,那么MyISAM是更好的选择。
InnoDB用于事务处理应用程序,具有众多特性,包括ACID事务支持。如果应用中需要执行大量的INSERT或UPDATE操作,则应该使用InnoDB,这样可以提高多用户并发操作的性能。
Mysql的存储引擎和索引
数据库必须有索引,没有索引则检索过程变成了顺序查找,O(n)的时间复杂度几乎是不能忍受的。我们非常容易想象出一个只有单关键字组成的表如何使用B+树进行索引,只要将关键字存储到树的节点即可。当数据库一条记录里包含多个字段时,一棵B+树就只能存储主键,如果检索的是非主键字段,则主键索引失去作用,又变成顺序查找了。这时应该在第二个要检索的列上建立第二套索引。 这个索引由独立的B+树来组织。有两种常见的方法可以解决多个B+树访问同一套表数据的问题,一种叫做聚簇索引(clustered index ),一种叫做非聚簇索引(secondary index)。这两个名字虽然都叫做索引,但这并不是一种单独的索引类型,而是一种数据存储方式。对于聚簇索引存储来说,行数据和主键B+树存储在一起,辅助键B+树只存储辅助键和主键,主键和非主键B+树几乎是两种类型的树。对于非聚簇索引存储来说,主键B+树在叶子节点存储指向真正数据行的指针,而非主键。
InnoDB使用的是聚簇索引,将主键组织到一棵B+树中,而行数据就储存在叶子节点上,若使用"where id = 14"这样的条件查找主键,则按照B+树的检索算法即可查找到对应的叶节点,之后获得行数据。若对Name列进行条件搜索,则需要两个步骤:第一步在辅助索引B+树中检索Name,到达其叶子节点获取对应的主键。第二步使用主键在主索引B+树种再执行一次B+树检索操作,最终到达叶子节点即可获取整行数据。
MyISM使用的是非聚簇索引,非聚簇索引的两棵B+树看上去没什么不同,节点的结构完全一致只是存储的内容不同而已,主键索引B+树的节点存储了主键,辅助键索引B+树存储了辅助键。表数据存储在独立的地方,这两颗B+树的叶子节点都使用一个地址指向真正的表数据,对于表数据来说,这两个键没有任何差别。由于索引树是独立的,通过辅助键检索无需访问主键的索引树。
为了更形象说明这两种索引的区别,我们假想一个表如下图存储了4行数据。其中Id作为主索引,Name作为辅助索引。图示清晰的显示了聚簇索引和非聚簇索引的差异。
我们重点关注聚簇索引,看上去聚簇索引的效率明显要低于非聚簇索引,因为每次使用辅助索引检索都要经过两次B+树查找,这不是多此一举吗?聚簇索引的优势在哪?
1 由于行数据和叶子节点存储在一起,这样主键和行数据是一起被载入内存的,找到叶子节点就可以立刻将行数据返回了,如果按照主键Id来组织数据,获得数据更快。
2 辅助索引使用主键作为"指针" 而不是使用地址值作为指针的好处是,减少了当出现行移动或者数据页分裂时辅助索引的维护工作,使用主键值当作指针会让辅助索引占用更多的空间,换来的好处是InnoDB在移动行时无须更新辅助索引中的这个"指针"。也就是说行的位置(实现中通过16K的Page来定位,后面会涉及)会随着数据库里数据的修改而发生变化(前面的B+树节点分裂以及Page的分裂),使用聚簇索引就可以保证不管这个主键B+树的节点如何变化,辅助索引树都不受影响。
所以在百万级数据及更大数据情况下,mysql innoDB 的索引表现更加优秀!
5、MySQL性能优化的一些经验
a.为查询优化你的查询
大多数的MySQL服务器都开启了查询缓存。这是提高性能最有效的方法之一,而且这是被MySQL的数据库引擎处理的。当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存中,这样,后续的相同的查询就不用操作表而直接访问缓存结果了。
这里最主要的问题是,对于程序员来说,这个事情是很容易被忽略的。因为,我们某些查询语句会让MySQL不使用缓存。
请看下面的示例:
// 查询缓存不开启
$r = mysql_query("SELECT username FROM user WHERE signup_date >= CURDATE()");
// 开启查询缓存
$today = date("Y-m-d");
$r = mysql_query("SELECT username FROM user WHERE signup_date >= '$today'");
上面两条SQL语句的差别就是 CURDATE() ,MySQL的查询缓存对这个函数不起作用。所以,像 NOW() 和 RAND() 或是其它的诸如此类的SQL函数都不会开启查询缓存,因为这些函数的返回是会不定的易变的。所以,你所需要的就是用一个变量来代替MySQL的函数,从而开启缓存。
b.学会使用EXPLAIN
使用EXPLAIN关键字可以让你知道MySQL是如何处理你的SQL语句的。
select id, title, cate from news where cate = 1
发现查询缓慢,然后在cate字段上增加索引,则会加快查询
c.当只要一行数据时使用LIMIT 1
当你查询表的有些时候只需要一条数据,请使用 limit 1。
d.正确的使用索引
索引并不一定就是给主键或是唯一的字段。如果在你的表中,有某个字段你总要会经常用来做搜索、拍下、条件,那么,请为其建立索引吧。
e.不要ORDER BY RAND()
效率很低的一种随机查询。
f.避免SELECT *
从数据库里读出越多的数据,那么查询就会变得越慢。并且,如果你的数据库服务器和WEB服务器是两台独立的服务器的话,这还会增加网络传输的负载。必须应该养成一个需要什么就取什么的好的习惯。
g.使用 ENUM 而不是 VARCHAR
ENUM 类型是非常快和紧凑的。在实际上,其保存的是 TINYINT,但其外表上显示为字符串。这样一来,用这个字段来做一些选项列表变得相当的完美。
如果你有一个字段,比如“性别”,“国家”,“民族”,“状态”或“部门”,你知道这些字段的取值是有限而且固定的,那么,你应该使用 ENUM 而不是 VARCHAR。
h.使用 NOT NULL
除非你有一个很特别的原因去使用 NULL 值,你应该总是让你的字段保持 NOT NULL。这看起来好像有点争议,请往下看。
首先,问问你自己“Empty”和“NULL”有多大的区别(如果是INT,那就是0和NULL)?如果你觉得它们之间没有什么区别,那么你就不要使用NULL。(你知道吗?在 Oracle 里,NULL 和 Empty 的字符串是一样的!)
不要以为 NULL 不需要空间,其需要额外的空间,并且,在你进行比较的时候,你的程序会更复杂。 当然,这里并不是说你就不能使用NULL了,现实情况是很复杂的,依然会有些情况下,你需要使用NULL值。
下面摘自MySQL自己的文档
“NULL columns require additional space in the row to record whether their values are NULL. For MyISAM tables, each NULL column takes one bit extra, rounded up to the nearest byte.”
i.IP地址存成 UNSIGNED INT
很多程序员都会创建一个 VARCHAR(15) 字段来存放字符串形式的IP而不是整形的IP。如果你用整形来存放,只需要4个字节,并且你可以有定长的字段。而且,这会为你带来查询上的优势,尤其是当你需要使用这样的WHERE条件:IP between ip1 and ip2。
我们必需要使用UNSIGNED INT,因为 IP地址会使用整个32位的无符号整形
j.固定长度的表会更快
如果表中的所有字段都是“固定长度”的,整个表会被认为是 “static” 或 “fixed-length”。 例如,表中没有如下类型的字段: VARCHAR,TEXT,BLOB。只要你包括了其中一个这些字段,那么这个表就不是“固定长度静态表”了,这样,MySQL 引擎会用另一种方法来处理。
固定长度的表会提高性能,因为MySQL搜寻得会更快一些,因为这些固定的长度是很容易计算下一个数据的偏移量的,所以读取的自然也会很快。而如果字段不是定长的,那么,每一次要找下一条的话,需要程序找到主键。
并且,固定长度的表也更容易被缓存和重建。不过,唯一的副作用是,固定长度的字段会浪费一些空间,因为定长的字段无论你用不用,他都是要分配那么多的空间。
k.垂直分割
“垂直分割”是一种把数据库中的表按列变成几张表的方法,这样可以降低表的复杂度和字段的数目,从而达到优化的目的。需要注意的是,这些被分出去的字段所形成的表,你不会经常性地去Join他们,不然的话,这样的性能会比不分割时还要差,而且,会是极数级的下降。
l.拆分大的 DELETE 或 INSERT 语句
如果在一个在线的网站上去执行一个大的 DELETE 或 INSERT 查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。
Apache 会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。
如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可能不仅仅会让你泊WEB服务Crash,还可能会让你的整台服务器马上掛了。
m.越小的列会越快
对于大多数的数据库引擎来说,硬盘操作可能是最重大的瓶颈。所以,把你的数据变得紧凑会对这种情况非常有帮助,因为这减少了对硬盘的访问。
n.选择正确的存储引擎
在 MySQL 中有两个存储引擎 MyISAM 和 InnoDB,每个引擎都有利有弊。
MyISAM 适合于一些需要大量查询的应用,但其对于有大量写操作并不是很好。甚至你只是需要update一个字段,整个表都会被锁起来,而别的进程,就算是读进程都无法操作直到读操作完成。另外,MyISAM 对于 SELECT COUNT(*) 这类的计算是超快无比的。
InnoDB 的趋势会是一个非常复杂的存储引擎,对于一些小的应用,它会比 MyISAM 还慢。他是它支持“行锁” ,于是在写操作比较多的时候,会更优秀。并且,他还支持更多的高级应用,比如:事务。
到此这篇关于mysql查询优化之100万条数据的一张表优化方案的文章就介绍到这了,更多相关mysql查询优化内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://www.cnblogs.com/llzhang123/p/9239682.html
1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。