MySQL 百万级数据的4种查询优化方式
一.limit越往后越慢的原因
当我们使用limit来对数据进行分页操作的时,会发现:查看前几页的时候,发现速度非常快,比如 limit 200,25,瞬间就出来了。但是越往后,速度就越慢,特别是百万条之后,卡到不行,那这个是什么原理呢。先看一下我们翻页翻到后面时,查询的sql是怎样的:
?1 | select * from t_name where c_name1= 'xxx' order by c_name2 limit 2000000,25; |
这种查询的慢,其实是因为limit后面的偏移量太大导致的。比如像上面的 limit 2000000,25 ,这个等同于数据库要扫描出 2000025条数据,然后再丢弃前面的 20000000条数据,返回剩下25条数据给用户,这种取法明显不合理。
二.百万数据模拟
1、创建员工表和部门表,编写存储过程插数据
?1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | /*部门表,存在则进行删除 */ drop table if EXISTS dep; create table dep( id int unsigned primary key auto_increment, depno mediumint unsigned not null default 0, depname varchar (20) not null default "" , memo varchar (200) not null default "" ); /*员工表,存在则进行删除*/ drop table if EXISTS emp; create table emp( id int unsigned primary key auto_increment, empno mediumint unsigned not null default 0, empname varchar (20) not null default "" , job varchar (9) not null default "" , mgr mediumint unsigned not null default 0, hiredate datetime not null , sal decimal (7,2) not null , comn decimal (7,2) not null , depno mediumint unsigned not null default 0 ); /* 产生随机字符串的函数*/ DELIMITER $ drop FUNCTION if EXISTS rand_string; CREATE FUNCTION rand_string(n INT ) RETURNS VARCHAR (255) BEGIN DECLARE chars_str VARCHAR (100) DEFAULT 'abcdefghijklmlopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' ; DECLARE return_str VARCHAR (255) DEFAULT '' ; DECLARE i INT DEFAULT 0; WHILE i < n DO SET return_str = CONCAT(return_str, SUBSTRING (chars_str,FLOOR(1+RAND()*52),1)); SET i = i+1; END WHILE; RETURN return_str; END $ DELIMITER; /*产生随机部门编号的函数*/ DELIMITER $ drop FUNCTION if EXISTS rand_num; CREATE FUNCTION rand_num() RETURNS INT (5) BEGIN DECLARE i INT DEFAULT 0; SET i = FLOOR(100+RAND()*10); RETURN i; END $ DELIMITER; /*建立存储过程:往emp表中插入数据*/ DELIMITER $ drop PROCEDURE if EXISTS insert_emp; CREATE PROCEDURE insert_emp( IN START INT (10), IN max_num INT (10)) BEGIN DECLARE i INT DEFAULT 0; /* set autocommit =0 把autocommit设置成0,把默认提交关闭*/ SET autocommit = 0; REPEAT SET i = i + 1; INSERT INTO emp(empno,empname,job,mgr,hiredate,sal,comn,depno) VALUES ((START+i),rand_string(6), 'SALEMAN' ,0001,now(),2000,400,rand_num()); UNTIL i = max_num END REPEAT; COMMIT ; END $ DELIMITER; /*建立存储过程:往dep表中插入数据*/ DELIMITER $ drop PROCEDURE if EXISTS insert_dept; CREATE PROCEDURE insert_dept( IN START INT (10), IN max_num INT (10)) BEGIN DECLARE i INT DEFAULT 0; SET autocommit = 0; REPEAT SET i = i+1; INSERT INTO dep( depno,depname,memo) VALUES ((START+i),rand_string(10),rand_string(8)); UNTIL i = max_num END REPEAT; COMMIT ; END $ DELIMITER; |
2.执行存储过程
?1 2 3 4 | /*插入120条数据*/ call insert_dept(1,120); /*插入500W条数据*/ call insert_emp(0,5000000); |
插入500万条数据可能很慢
三.4种查询方式
1.普通limit分页
?1 2 3 4 5 6 | /*偏移量为100,取25*/ SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25; /*偏移量为4800000,取25*/ SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25; |
执行结果
?1 2 3 4 5 6 7 8 9 10 | [SQL] SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno order by a.id desc limit 100,25; 受影响的行: 0 时间: 0.001s [SQL] SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno order by a.id desc limit 4800000,25; 受影响的行: 0 时间: 12.275s |
越往后,查询效率越慢
2.使用索引覆盖+子查询优化
因为我们有主键id,并且在上面建了索引,所以可以先在索引树中找到开始位置的 id值,再根据找到的id值查询行数据。
?1 2 3 4 5 6 7 8 9 10 11 | /*子查询获取偏移100条的位置的id,在这个位置上往后取25*/ SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno where a.id >= ( select id from emp order by id limit 100,1) order by a.id limit 25; /*子查询获取偏移4800000条的位置的id,在这个位置上往后取25*/ SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno where a.id >= ( select id from emp order by id limit 4800000,1) order by a.id limit 25; |
执行结果
?1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | [SQL] SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno where a.id >= ( select id from emp order by id limit 100,1) order by a.id limit 25; 受影响的行: 0 时间: 0.106s [SQL] SELECT a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno where a.id >= ( select id from emp order by id limit 4800000,1) order by a.id limit 25; 受影响的行: 0 时间: 1.541s |
3.起始位置重定义
适用于主键是自增主键的表
?1 2 3 4 5 6 7 8 9 10 | /*记住了上次的分页的最后一条数据的id是100,这边就直接跳过100,从101开始扫描表*/ SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno where a.id > 100 order by a.id limit 25; /*记住了上次的分页的最后一条数据的id是4800000,这边就直接跳过4800000,从4800001开始扫描表*/ SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno where a.id > 4800000 order by a.id limit 25; |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | [SQL] SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno where a.id > 100 order by a.id limit 25; 受影响的行: 0 时间: 0.001s [SQL] SELECT a.id,a.empno,a.empname,a.job,a.sal,b.depno,b.depname from emp a left join dep b on a.depno = b.depno where a.id > 4800000 order by a.id limit 25; 受影响的行: 0 时间: 0.000s |
这个效率是最好的,无论怎么分页,耗时基本都是一致的,因为他执行完条件之后,都只扫描了25条数据。
4,降级策略(百度的做法)
这个策略是最简单有效的,因为一般的大数据查询都会有搜索条件,没人会关注100页以后的内容,当用户查询页数过大时,给它返回一个错误就行了,例如百度就只能搜索到76页
以上就是MySQL 百万级数据的4种查询优化方式的详细内容,更多关于MySQL 百万级数据查询优化的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/xiaodou00/p/14813759.html
1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。