Laravel + Elasticsearch 实现中文搜索的方法

吾爱主题 阅读:114 2021-09-28 11:43:00 评论:0

Elasticsearch

Elasticsearch 是一个基于 Apache Lucene(TM) 的开源搜索引擎,无论在开源还是专有领域,Lucene可 以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库。

但是,Lucene 只是一个库。想要发挥其强大的作用,你需使用 Java 并要将其集成到你的应用中。Lucene 非常复杂,你需要深入的了解检索相关知识来理解它是如何工作的。

Elasticsearch 也是使用 Java 编写并使用 Lucene 来建立索引并实现搜索功能,但是它的目的是通过简单连贯的 RESTful API 让全文搜索变得简单并隐藏 Lucene 的复杂性。

不过,Elasticsearch 不仅仅是 Lucene 和全文搜索引擎,它还提供:

  • 分布式的实时文件存储,每个字段都被索引并可被搜索
  • 实时分析的分布式搜索引擎
  • 可以扩展到上百台服务器,处理PB级结构化或非结构化数据

而且,所有的这些功能被集成到一台服务器,你的应用可以通过简单的 RESTful API、各种语言的客户端甚至命令行与之交互。上手 Elasticsearch 非常简单,它提供了许多合理的缺省值,并对初学者隐藏了复杂的搜索引擎理论。它开箱即用(安装即可使用),只需很少的学习既可在生产环境中使用。

Elasticsearch 在 Apache 2 license 下许可使用,可以免费下载、使用和修改。

ElasticSearch 安装

在 Laradock 中已经集成了 ElasticSearch。我们可以直接使用:

  1. docker-compose up -d elasticsearch

如果需要安装插件,执行命令:

  1. docker-compose exec elasticsearch /usr/share/elasticsearch/bin/elasticsearch-plugin install {plugin-name}
  2.  
  3. // 重启容器
  4. docker-compose restart elasticsearch

注:

The vm.max_map_count kernel setting must be set to at least 262144 for production use.

由于我是 centos 7 环境,直接设置在系统设置:
sysctl -w vm.max_map_count=262144

默认用户名和密码:「elastic」、「changeme」,端口号:9200

ElasticHQ

ElasticHQ is an open source application that offers a simplified interface for managing and monitoring Elasticsearch clusters.

Management and Monitoring for Elasticsearch.

http://www.elastichq.org/

  • Real-Time Monitoring
  • Full Cluster Management
  • Full Cluster Monitoring
  • Elasticsearch Version Agnostic
  • Easy Install - Always On
  • Works with X-Pack

输入我们的 Elasticsearch Host,即可进入后台。

默认的创建了:

一个集群 cluster:laradock-cluster
一个节点 node:laradock-node
一个索引 index:.elastichq

IK 分词器安装

ElasticSearch 主要是用于自己 blog 或者公众号文章的搜索使用,所以需要选择一个中文分词器配合使用,这里刚开始推荐使用 IK 分词器,下面开始安装对应 ElasticSearch版本 (7.5.1) 一致的插件:

https://github.com/medcl/elasticsearch-analysis-ik/releases

  1. // 安装插件
  2. docker-compose exec elasticsearch /usr/share/elasticsearch/bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.5.1/elasticsearch-analysis-ik-7.5.1.zip

注:可以将 zip 文件先下载回来,然后再安装,速度会快些。

检验分词效果

根据 Elasticsearch API 测试,分词的效果达到了:

  1. ~ curl -X POST "http://your_host/_analyze?pretty" -H 'Content-Type: application/json' -d'
  2. {
  3. "analyzer": "ik_max_word",
  4. "text": "我是中国人"
  5. }
  6. '
  7.  
  8. {
  9. "tokens" : [
  10. {
  11. "token" : "我",
  12. "start_offset" : 0,
  13. "end_offset" : 1,
  14. "type" : "CN_CHAR",
  15. "position" : 0
  16. },
  17. {
  18. "token" : "是",
  19. "start_offset" : 1,
  20. "end_offset" : 2,
  21. "type" : "CN_CHAR",
  22. "position" : 1
  23. },
  24. {
  25. "token" : "中国人",
  26. "start_offset" : 2,
  27. "end_offset" : 5,
  28. "type" : "CN_WORD",
  29. "position" : 2
  30. },
  31. {
  32. "token" : "中国",
  33. "start_offset" : 2,
  34. "end_offset" : 4,
  35. "type" : "CN_WORD",
  36. "position" : 3
  37. },
  38. {
  39. "token" : "国人",
  40. "start_offset" : 3,
  41. "end_offset" : 5,
  42. "type" : "CN_WORD",
  43. "position" : 4
  44. }
  45. ]
  46. }

结合 Laravel

虽然 Elasticsearch 官方提供了对应的 PHP 版本的插件,但我们还是希望和 Laravel 结合的更紧密些,所以这里选择和 Scout 结合使用,具体用到了 tamayo/laravel-scout-elastic 插件。

  1. composer require tamayo/laravel-scout-elastic
  2.  
  3. composer require laravel/scout
  4.  
  5. php artisan vendor:publish

选择:Laravel\Scout\ScoutServiceProvider

修改驱动为 elasticsearch

  1. 'driver' => env('SCOUT_DRIVER', 'elasticsearch'),

创建索引

创建索引有几种方法,其中可以使用 Ela 可视化工具 ElasticHQ 直接创建。

接下来我们需要更新这个索引,补充 Mappings 这部分,可以用 Postman。

另一种方法是用 Laravel 自带的 Artisan 命令行功能。

这里我们推荐使用 Artisan 命令行。

  1. php artisan make:command ESOpenCommand

根据官网提示,我们可以在 ESOpenCommand 上向 Elasticsearch 服务器发送 PUT 请求,这里借助 Elasticsearch 提供的 PHP 插件,在我们使用 tamayo/laravel-scout-elastic 插件时,已经安装了 Elasticsearch PHP 插件:

下面就可以借助插件,创建我们的 Index,直接看代码:

  1. public function handle()
  2. {
  3. $host = config('scout.elasticsearch.hosts');
  4. $index = config('scout.elasticsearch.index');
  5. $client = ClientBuilder::create()->setHosts($host)->build();
  6.  
  7. if ($client->indices()->exists(['index' => $index])) {
  8. $this->warn("Index {$index} exists, deleting...");
  9. $client->indices()->delete(['index' => $index]);
  10. }
  11.  
  12. $this->info("Creating index: {$index}");
  13.  
  14. return $client->indices()->create([
  15. 'index' => $index,
  16. 'body' => [
  17. 'settings' => [
  18. 'number_of_shards' => 1,
  19. 'number_of_replicas' => 0
  20. ],
  21. 'mappings' => [
  22. '_source' => [
  23. 'enabled' => true
  24. ],
  25. 'properties' => [
  26. 'id' => [
  27. 'type' => 'long'
  28. ],
  29. 'title' => [
  30. 'type' => 'text',
  31. 'analyzer' => 'ik_max_word',
  32. 'search_analyzer' => 'ik_smart'
  33. ],
  34. 'subtitle' => [
  35. 'type' => 'text',
  36. 'analyzer' => 'ik_max_word',
  37. 'search_analyzer' => 'ik_smart'
  38. ],
  39. 'content' => [
  40. 'type' => 'text',
  41. 'analyzer' => 'ik_max_word',
  42. 'search_analyzer' => 'ik_smart'
  43. ]
  44. ],
  45. ]
  46. ]
  47. ]);
  48. }

好了,我们执行 Kibana 看到我们已经创建好了 Index:

注 Kibana 本地 Docker 安装:

后续会重点说明 Kibana 如何使用

  1. docker run -d --name kibana -e ELASTICSEARCH_HOSTS=http://elasticsearch_host -p 5601:5601 -e SERVER_NAME=ki.test kibana:7.5.2

为了验证 Index 是否可用,可以插入一条数据看看:

  1. curl -XPOST your_host/coding01_open/_create/1 -H 'Content-Type:application/json' -d'
  2. {"content":"中韩渔警冲突调查:韩警平均每天扣1艘中国渔船"}

可以通过浏览器看看对应的数据:

有了 Index,下一步我们就可以结合 Laravel,导入、更新、查询等操作了。

Laravel Model 使用

Laravel 框架已经为我们推荐使用 Scout 全文搜索,我们只需要在 Article Model 加上官方所说的内容即可,很简单,推荐大家看 Scout 使用文档:https://learnku.com/docs/laravel/6.x/scout/5191,下面直接上代码:

  1. <?php
  2.  
  3. namespace App;
  4.  
  5. use App\Tools\Markdowner;
  6. use Illuminate\Database\Eloquent\Model;
  7. use Illuminate\Database\Eloquent\SoftDeletes;
  8. use Laravel\Scout\Searchable;
  9.  
  10. class Article extends Model
  11. {
  12. use Searchable;
  13.  
  14. protected $connection = 'blog';
  15. protected $table = 'articles';
  16. use SoftDeletes;
  17.  
  18. /**
  19. * The attributes that should be mutated to dates.
  20. *
  21. * @var array
  22. */
  23. protected $dates = ['published_at', 'created_at', 'deleted_at'];
  24.  
  25. /**
  26. * The attributes that are mass assignable.
  27. *
  28. * @var array
  29. */
  30. protected $fillable = [
  31. 'user_id',
  32. 'last_user_id',
  33. 'category_id',
  34. 'title',
  35. 'subtitle',
  36. 'slug',
  37. 'page_image',
  38. 'content',
  39. 'meta_description',
  40. 'is_draft',
  41. 'is_original',
  42. 'published_at',
  43. 'wechat_url',
  44. ];
  45.  
  46. protected $casts = [
  47. 'content' => 'array'
  48. ];
  49.  
  50. /**
  51. * Set the content attribute.
  52. *
  53. * @param $value
  54. */
  55. public function setContentAttribute($value)
  56. {
  57. $data = [
  58. 'raw' => $value,
  59. 'html' => (new Markdowner)->convertMarkdownToHtml($value)
  60. ];
  61.  
  62. $this->attributes['content'] = json_encode($data);
  63. }
  64.  
  65. /**
  66. * 获取模型的可搜索数据
  67. *
  68. * @return array
  69. */
  70. public function toSearchableArray()
  71. {
  72. $data = [
  73. 'id' => $this->id,
  74. 'title' => $this->title,
  75. 'subtitle' => $this->subtitle,
  76. 'content' => $this->content['html']
  77. ];
  78.  
  79. return $data;
  80. }
  81.  
  82. public function searchableAs()
  83. {
  84. return '_doc';
  85. }
  86. }

Scout 提供了 Artisan 命令 import 用来导入所有已存在的记录到搜索索引中。

  1. php artisan scout:import "App\Article"

看看 Kibana,已存入 12 条数据,和数据库条数吻合。

有了数据,我们可以测试看看能不能查询到数据。

还是一样的,创建一个命令:

  1. class ElasearchCommand extends Command
  2. {
  3. /**
  4. * The name and signature of the console command.
  5. *
  6. * @var string
  7. */
  8. protected $signature = 'command:search {query}';
  9.  
  10. /**
  11. * The console command description.
  12. *
  13. * @var string
  14. */
  15. protected $description = 'Command description';
  16.  
  17. /**
  18. * Create a new command instance.
  19. *
  20. * @return void
  21. */
  22. public function __construct()
  23. {
  24. parent::__construct();
  25. }
  26.  
  27. /**
  28. * Execute the console command.
  29. *
  30. * @return mixed
  31. */
  32. public function handle()
  33. {
  34. $article = Article::search($this->argument('query'))->first();
  35. $this->info($article->title);
  36. }
  37. }

这是我的 titles,我随便输入一个关键字:「清单」,看是否能搜到。

总结

整体完成了:

  • Elasticsearch 安装;
  • Elasticsearch IK 分词器插件安装;
  • Elasticsearch 可视化工具 ElasticHQ 和 Kibana 的安装和简单使用;
  • Scout 的使用;
  • Elasticsearch 和 Scout 结合使用。

接下来就要将更多的内容存入 Elasticsearch 中,为自己的 blog、公众号、自动化搜索等场景提供全文搜索。

参考

推荐一个命令行应用开发工具——Laravel Zero

Artisan 命令行 https://learnku.com/docs/laravel/6.x/artisan/5158

Scout 全文搜索 https://learnku.com/docs/laravel/6.x/scout/5191

How to integrate Elasticsearch in your Laravel App – 2019 edition https://madewithlove.be/how-to-integrate-elasticsearch-in-your-laravel-app-2019-edition/

Kibana Guide https://www.elastic.co/guide/en/kibana/index.html

elasticsearch php-api [https://www.elastic.co/guide/en/elasticsearch/client/php-api/current/index.html](https://www.elastic.co/guide/en/elasticsearch/client/php-api/current/index.html)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

原文链接:https://segmentfault.com/a/1190000021670576

可以去百度分享获取分享代码输入这里。
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

【腾讯云】云服务器产品特惠热卖中
搜索
标签列表
    关注我们

    了解等多精彩内容