详解MySQL的Seconds_Behind_Master

吾爱主题 阅读:192 2024-04-02 08:02:22 评论:0

seconds_behind_master

 

对于mysql主备实例,seconds_behind_master是衡量master与slave之间延时的一个重要参数。通过在slave上执行"show slave status;"可以获取seconds_behind_master的值。

原始实现

 

definition:the number of seconds that the slave sql thread is behind processing the master binary log.

type:time_t(long)

计算方式如下:

?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 rpl_slave.cc::show_slave_status_send_data() if ((mi->get_master_log_pos() == mi->rli->get_group_master_log_pos()) &&         (!strcmp(mi->get_master_log_name(),                  mi->rli->get_group_master_log_name()))) {       if (mi->slave_running == mysql_slave_run_connect)         protocol->store(0ll);       else         protocol->store_null();     } else {       long time_diff = ((long)( time (0) - mi->rli->last_master_timestamp) -                         mi->clock_diff_with_master);       protocol->store(           (longlong)(mi->rli->last_master_timestamp ? max (0l, time_diff) : 0));     }

主要分为以下两种情况:

  • sql线程等待io线程获取主机binlog,此时seconds_behind_master为0,表示备机与主机之间无延时;
  • sql线程处理relay log,此时seconds_behind_master通过(long)(time(0) – mi->rli->last_master_timestamp) – mi->clock_diff_with_master计算得到;

last_master_timestamp

 

定义:

主库binlog中事件的时间。

type: time_t (long)

计算方式:

last_master_timestamp根据备机是否并行复制有不同的计算方式。

非并行复制:

?
1 2 3 4 5 6 7 8 9 10 11 rpl_slave.cc:exec_relay_log_event() if ((!rli->is_parallel_exec() || rli->last_master_timestamp == 0) &&      !(ev->is_artificial_event() || ev->is_relay_log_event() ||       (ev->common_header-> when .tv_sec == 0) ||       ev->get_type_code() == binary_log::format_description_event ||       ev->server_id == 0)) {   rli->last_master_timestamp= ev->common_header-> when .tv_sec +                               (time_t) ev->exec_time;   dbug_assert(rli->last_master_timestamp >= 0); }

在该模式下,last_master_timestamp表示为每一个event的结束时间,其中when.tv_sec表示event的开始时间,exec_time表示事务的执行时间。该值的计算在apply_event之前,所以event还未执行时,last_master_timestamp已经被更新。由于exec_time仅在query_log_event中存在,所以last_master_timestamp在应用一个事务的不同event阶段变化。以一个包含两条insert语句的事务为例,在该代码段的调用时,打印出event的类型、时间戳和执行时间

?
1 2 3 4 5 create table t1(a int primary key auto_increment ,b longblob) engine=innodb; begin ; insert into t1(b) select repeat( 'a' ,104857600); insert into t1(b) select repeat( 'a' ,104857600); commit ;

10t06:41:32.628554z 11 [note] [my-000000] [repl] event_type: 33 gtid_log_event

2020-02-10t06:41:32.628601z 11 [note] [my-000000] [repl] event_time: 1581316890

2020-02-10t06:41:32.628614z 11 [note] [my-000000] [repl] event_exec_time: 0

2020-02-10t06:41:32.628692z 11 [note] [my-000000] [repl] event_type: 2   query_event

2020-02-10t06:41:32.628704z 11 [note] [my-000000] [repl] event_time: 1581316823

2020-02-10t06:41:32.628713z 11 [note] [my-000000] [repl] event_exec_time: 35

2020-02-10t06:41:32.629037z 11 [note] [my-000000] [repl] event_type: 19   table_map_event

2020-02-10t06:41:32.629057z 11 [note] [my-000000] [repl] event_time: 1581316823

2020-02-10t06:41:32.629063z 11 [note] [my-000000] [repl] event_exec_time: 0

2020-02-10t06:41:33.644111z 11 [note] [my-000000] [repl] event_type: 30    write_rows_event

2020-02-10t06:41:33.644149z 11 [note] [my-000000] [repl] event_time: 1581316823

2020-02-10t06:41:33.644156z 11 [note] [my-000000] [repl] event_exec_time: 0

2020-02-10t06:41:43.520272z 0 [note] [my-011953] [innodb] page cleaner took 9185ms to flush 3 and evict 0 pages

2020-02-10t06:42:05.982458z 11 [note] [my-000000] [repl] event_type: 19   table_map_event

2020-02-10t06:42:05.982488z 11 [note] [my-000000] [repl] event_time: 1581316858

2020-02-10t06:42:05.982495z 11 [note] [my-000000] [repl] event_exec_time: 0

2020-02-10t06:42:06.569345z 11 [note] [my-000000] [repl] event_type: 30    write_rows_event

2020-02-10t06:42:06.569376z 11 [note] [my-000000] [repl] event_time: 1581316858

2020-02-10t06:42:06.569384z 11 [note] [my-000000] [repl] event_exec_time: 0

2020-02-10t06:42:16.506176z 0 [note] [my-011953] [innodb] page cleaner took 9352ms to flush 8 and evict 0 pages

2020-02-10t06:42:37.202507z 11 [note] [my-000000] [repl] event_type: 16    xid_event

2020-02-10t06:42:37.202539z 11 [note] [my-000000] [repl] event_time: 1581316890

2020-02-10t06:42:37.202546z 11 [note] [my-000000] [repl] event_exec_time: 0

并行复制:

?
1 2 3 4 5 6 rpl_slave.cc   mts_checkpoint_routine ts = rli->gaq->empty()            ? 0            : reinterpret_cast<slave_job_group *>(rli->gaq->head_queue())->ts;   rli->reset_notified_checkpoint(cnt, ts, true );   /* end - of "coordinator::" commit_positions" */

在该模式下备机上存在一个分发队列gaq,如果gaq为空,则设置last_commit_timestamp为0;如果gaq不为空,则此时维护一个checkpoint点lwm,lwm之前的事务全部在备机上执行完成,此时last_commit_timestamp被更新为lwm所在事务执行完成后的时间。该时间类型为time_t类型。

?
1 2 3 ptr_group->ts = common_header-> when .tv_sec +                     (time_t)exec_time;  // seconds_behind_master related rli->rli_checkpoint_seqno++;
?
1 2 3 4 5 if (update_timestamp) {   mysql_mutex_lock(&data_lock);   last_master_timestamp = new_ts;   mysql_mutex_unlock(&data_lock); }

在并行复制下,event执行完成之后才会更新last_master_timestamp,所以非并行复制和并行复制下的seconds_behind_master会存在差异。

clock_diff_with_master

 

定义:

  • the difference in seconds between the clock of the master and the clock of the slave (second - first). it must be signed as it may be <0 or >0. clock_diff_with_master is computed when the i/o thread starts; for this the i/o thread does a select unix_timestamp() on the master.
  • type: long
?
1 2 3 4 5 6 7 8 9 10 11 12 rpl_slave.cc::get_master_version_and_clock() if (!mysql_real_query(mysql, string_with_len( "select unix_timestamp()" )) &&       (master_res= mysql_store_result(mysql)) &&       (master_row= mysql_fetch_row(master_res)))   {     mysql_mutex_lock(&mi->data_lock);     mi->clock_diff_with_master=       (long) ( time ((time_t*) 0) - strtoul(master_row[0], 0, 10));     dbug_execute_if( "dbug.mts.force_clock_diff_eq_0" ,       mi->clock_diff_with_master= 0;);     mysql_mutex_unlock(&mi->data_lock);   }

该差值仅被计算一次,在master与slave建立联系时处理。

其他

 

exec_time

定义:

  • the difference from the statement's original start timestamp and the time at which it completed executing.
  • type: unsigned long
?
1 2 3 4 struct timeval end_time; ulonglong micro_end_time = my_micro_time(); my_micro_time_to_timeval(micro_end_time, &end_time); exec_time = end_time.tv_sec - thd_arg->query_start_in_secs();

时间函数

(1)time_t time(time_t timer) time_t为long类型,返回的数值仅精确到秒;

(2)int gettimeofday (struct timeval *tv, struct timezone *tz) 可以获得微秒级的当前时间;

(3)timeval结构

?
1 2 3 4 5 #include < time .h> stuct timeval {     time_t tv_sec; /*seconds*/     suseconds_t tv_usec; /*microseconds*/ }

总结

 

使用seconds_behind_master衡量主备延时只能精确到秒级别,且在某些场景下,seconds_behind_master并不能准确反映主备之间的延时。主备异常时,可以结合seconds_behind_master源码进行具体分析。

以上就是详解mysql的seconds_behind_master的详细内容,更多关于mysql seconds_behind_master的资料请关注服务器之家其它相关文章!

可以去百度分享获取分享代码输入这里。
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

【腾讯云】云服务器产品特惠热卖中
搜索
标签列表
    关注我们

    了解等多精彩内容