Linux静态链接库使用类模板的快速排序算法

吾爱主题 阅读:153 2024-04-05 13:52:11 评论:0

快速排序的本质是从数组中选一个参考值ref,比该参考值的大的,将其放在ref的右边,比ref小的放在左边,然后不断的对两边重复执行该动作

我们先列出来快速排序的步骤:

1.从数组中选一个参考值ref,比该参考值的大的,将其放在ref的右边,

上面的动作将数组划分为两部分:

A ref B

A是比ref小的数组元素集合,它仍然是数组,B是比ref大的元素集合,它也仍然是数组

2.在对ref左右两边的元素重复上述动作,直到A和B都只剩下一个元素,那么排序就算完成了。

 

重点是如何分别选出来两个集合A和B。算法导论里面把这个步骤叫做partition动作。

先把算法导论里面的伪代码贴出来,大家先看一下:

先看第一种ref的选择方法,即ref = a[r]

?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 partition(a[], p, r) { i = p j = p-1 ref = a[r] for(; i<r; i++) {   if(a[i]<ref) { j++ exchange(a[i], a[j]) } } exchange(a[r], a[j+1]) return j+1; }

首先找一个参考值,ref = a[r],为了简单起见,这里取最后一个作为参考值,实际上可以去任意一个值作为参考值。这个我们一会再说。

然后找定义两个游标,分别是i 和j。i=p, j=p-1。为什么要这么定义呢?原因是我们既然选的是第一个,也就是a[p],同时表示是从数组的第一个元素开始遍历的。

选取j的目的是,我们要时刻知道当前最近一次比ref小的值的位置。由于我们选取的是a[r],作为参考值,且从第一个元素开始遍历,为了跟踪最近一次比ref小的数的游标,暂时j=p-1。大家可以仔细体会一下这个做的意义。

观察上述代码可以看到,j总是记录着最近一次比ref小的数的游标,因此最后return j+1,所有比ref小的数的游标均小于j+1,所有比ref大的数的游标均大于j+2。

总之我们执行partition的目的就是为了得到A,B,以及中间数的游标,这样我们就可以分别对A和B重复执行上述动作。

 

接下来我们考虑另外两种选取ref的方法。从上面选取最后一个值a[r],作为参考值,并且在最后,将a[r]和a[j+1]交换的动作可以知道,我们总是希望知道我们选取参考值在partition过程中的位置,以便我们可以在最后一步,将a[refId] 和 a[j+1]的值交换。这里的refId表示选取ref值在a[]中的游标。

如果我们选取ref为最后一个值,那么在所有的partition过程中,这个值的位置是固定的。但是,假如我们选取的ref的refId是p到r范围内的一个随机数呢?

显然,假如我们随机选取ref的值,那么在partition过程中,refId对于的ref就有可能和其他值交换。这时候我们就需要更新ref对应的游标。

这样一来,思路就很清晰了。

先给出partition的伪代码:

?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 partition(a[], p, r){ refId = random(p,r) i = p j = p-1 for(; i<=r; i++) { if(a[i]<ref) { j++ if(j == refId)//此时j刚好等refId,并且要和a[i]交换,则更新refId { refId = i } exchange(a[i], a[j]) } } exchange(a[j+1], a[refId]) return j+1 }

从三种选择ref的方法可以看到本质上都是一样的,都为用一个游标j记录最近一次遍历到的比ref小的数据的游标,然后将ref和a[j+1]交换,返回j+1。

下面给出C++的代码实现

?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 #include < iostream > #include < stack > #include"stdlib.h" #include < time.h >   using namespace std; template< class T> class SORT { public: static void myQsort(T a[], int p, int r); static void myQsortNoRecur(T a[], int p, int r); private: static int partition(T a[], int p, int r); static void exchange(T a[], int i, int j); }; template< class T> void SORT< T >::exchange(T a[], int i, int j) { T temp = a[i]; a[i] = a[j]; a[j] = temp; return; } template< class T> int SORT< T >::partition(T a[],int p,int r) { int i = p; int j = p-1; T ref = a[p]; int refId = p; srand((unsigned)time(NULL)); refId = (rand() % (r-p+1))+ p; //cout<< refId <<endl; ref = a [refId]; for(; i<=r; i++) { if(a[i] < ref) { j++; exchange(a, i, j); if(j == refId) { refId = i ; } } } exchange(a, j+1, refId); return j+1; } template<class T> void SORT< T >::myQsort(T a[],int p,int r) { int q = 0; if(p< r ) { q = partition (a, p, r); myQsort(a, p, q-1); myQsort(a, p+1, r); } return; } template<class T> void SORT< T >::myQsortNoRecur(T a[], int p, int r) { int start = p; int end = r; int mid = 0; std::stack< int > sortStk;   sortStk.push(p); sortStk.push(r);   while(!sortStk.empty()) { end = sortStk.top(); sortStk.pop(); start = sortStk.top(); sortStk.pop(); if(start < end ) { mid = partition (a, start, end); sortStk.push(start); sortStk.push(mid -1); sortStk.push(mid + 1); sortStk.push(end); } } } int main(int argc, char** argv) { int a[10]; int b[10]; srand((unsigned)time(NULL)); for(int i = 0 ; i<9; i++) { a[i] = rand(); }   srand((unsigned)time(NULL)); for(int i = 0 ; i<9; i++) { b[i] = rand(); }   SORT<int>::myQsort(a,0, 9);   SORT< int >::myQsortNoRecur(b,0, 9);   for(int i=0; i<10; i++) { cout<<a[i]<<" "; } cout<<endl; for(int i=0; i<10; i++) { cout<<b[i]<<" "; } return 0; }

上面的代码我直接给出了快速排序的递归和非递归实现。
递归的实现方式很好理解,但是加入别人正在面试你快速排序算法的时候,多半会让你用非递归的方式实现给他看。下面我们就讨论一下。

先观察一下递归算法的运行过程,即每次都去对一段更小的范围去调用partition函数。所以我们需要知道每一次调用partition函数的start和end游标,同时,每一次partition调用都会产生新的start和end游标。

?
1 2 3 4 5 6 7 8 9 10 11 12 13 template< class T> void SORT< T >::myQsort(T a[],int p,int r) { int q = 0; if(p<r) { q = partition(a, p, r); myQsort(a, p, q-1); myQsort(a, p+1, r); } return;   }

这样的话,我们就可以用一个通用容器去存放每次调用partition生成的start和end游标。知道虽有的合法的start和end游标都作为参数调用了partition函数。所谓合法的start和end就是start < end。。。。。

关于递归算法的非递归实现,第一个想到的数据结构肯定是栈。其实别的数据结构,例如队列,也是可以实现。这里给出基于stl内的stack的实现方法。代码如下

?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 template< class T> void SORT< T >::myQsortNoRecur(T a[], int p, int r) { int start = p; int end = r; int mid = 0; std::stack< int > sortStk;   sortStk.push(p); sortStk.push(r);   while(!sortStk.empty()) { end = sortStk.top(); sortStk.pop(); start = sortStk.top(); sortStk.pop(); if(start < end) { mid = partition(a, start, end); sortStk.push(start); sortStk.push(mid -1); sortStk.push(mid + 1); sortStk.push(end); } } }

上面代码的运行过程就是每次循环,从容器内拿一个start和end,如果是合法的,就依次将他们再次放入容易,知道这个容器为空未知。

 给个运行实例吧,我在代码里面实现的是实现随机数排序,ref采用随机选取的方式。

原文链接:http://www.cnblogs.com/real-madrid/p/7203618.html

可以去百度分享获取分享代码输入这里。
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

【腾讯云】云服务器产品特惠热卖中
搜索
标签列表
    关注我们

    了解等多精彩内容